
 

 

 

 

 

 

 

Printed Date:  June 10, 2013 1 Confidential  

 
 
 
 
 
 

Provincial XML Service  
User Guide 

 

Organization: Ontario Association of Community 

Care Access Centres (OACCAC)  

Division: IS/IT 

Version: 1.14 

Version Date: 10 June 2013 

Prepared By: Fiona Williamson 

 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

2 

 

Revision Log 

Version 

No. 

Version Date Summary of Change Changed by/Input from 

1.0 May 31, 2009 Initial version Scott Atkins 

1.1 June 1, 2009 Updates from feedback, move document 

to user guide focused. 

Scott Atkins 

1.2 June 25, 2009 Change security model to delegated 

Transport-with-Message-Credential 

 

Minor updates to WSDL regarding 

GetMessageList filter object types. 

 

GetMessageListFilter argument 

clarifications and changes 

 

Update example config file to show 

support for new security model. 

Scott Atkins 

1.3 July 2, 2009 Modified message requests to include 

user authentication credentials at the 

message level. 

 

Moved security model to Transport-Only 

to assist vendors in accessing the 

validation environment in a timely 

manner. 

Scott Atkins 

1.4 August 10, 

2009 

Remove now-obsolete credentials fields 

from SOAP message 

 

Move security model back to message-

based security with username token 

Scott Atkins 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

3 

 

Version 

No. 

Version Date Summary of Change Changed by/Input from 

secured via TLS and server-certificate 

1.5  Change security-context attribute for 

endpoint bindings. 

 

Added ‘MessageDestination’ Filter field 

for both request and response filters.  

 

Scott Atkins 

1.6 October 7, 

2009 

Added details for the new ‘PostMessage’ 

method 

Manuel Ng 

1.7 November 4, 

2009 

Updated the example of using 

‘PostMessage’ 

Manuel Ng 

1.8 November 23, 

2009 

Updated the GetMessage Data Contracts 

 

Added an GetMessage example to mark 

‘Posted’ messages ‘Processed’ 

Manuel Ng 

1.9 November 27, 

2009 

Added the valid message type strings in 

the GetMessageListFilter data contract 

for R1.2 

Manuel Ng 

1.10 December 17, 

2009 

Added message type strings in the 

GetMessageListFilter data contract for 

R1.3 

Manuel Ng 

1.11 March 29, 2010 Added message type strings in 

GetMessageListFilter data contract for 

R1.4 

 

Added an GetMessage example for the 

multi-versioning feature 

Manuel Ng 

1.12 August 30, Updated document content and format Arthur Bydon 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

4 

 

Version 

No. 

Version Date Summary of Change Changed by/Input from 

2010 to give clear examples and make 

document easier to use for providers and 

vendors. 

Fiona Williamson 

1.13 November 01, 

2011 

Added acceptable usage section (1.3). Ion Moraru 

Fiona Williamson 

1.14 March 21, 2012 Added Production and Certification 

service reference and endpoint addresses 

to document 

Fiona Williamson 

1.15 June 10, 2013 Removed reference to extranet. 

Removed endpoint references. 

Fiona Williamson 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

5 

 

Table of Contents 

 

Revision Log................................................................................................................................................................................... 2 

Table of Contents .......................................................................................................................................................................... 5 

Provincial XML Service .................................................................................................................................................................. 6 

User's Guide .................................................................................................................................................................................. 6 

1. Introduction .......................................................................................................................................................................... 6 

2. Service Contracts................................................................................................................................................................... 9 

3. Data Contracts..................................................................................................................................................................... 16 

4. Security Overview ............................................................................................................................................................... 34 

5. Client Configuration ............................................................................................................................................................ 35 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

6 

 

Provincial XML Service 

User's Guide  

1. Introduction 

1.1 Purpose 

This document presents a technical overview of the service contracts, data contracts, and usage 
patterns that client is expected to abide by while consuming the Provincial XML Service.  Descriptions 
of messaging contracts, data contracts, and usage examples are provided. 

1.2 Background 

The Provincial XML Solution will extend the document exchange mechanism currently used between 
providers and vendors with a new format – XML. The solution will promote a Public Interface designed 
for system-to-system electronic data exchange with Providers and Vendors interested in integrating 
their systems with CHRIS/HPG platform.  

Provincial XML will act as an integration layer on top of the Health Partner Gateway (HPG) to allow 
service-oriented access to HPG documents in a programmatic way.  Additionally, Provincial XML will 
translate all HPG formats into a new standard XML format, called the Provincial XML Document (PXD) 
format.  Each specific message type in the PXD domain will be backed by a specific XML Schema which 
will define the structure and rules of the allowable document content. Over time, these PXD schema 
files will be versioned to support new functionality or re-arrange information to the benefit of all 
parties involved in document exchange. 

Provincial XML was built using Microsoft .Net technology, version 3.5.  The underlying service structure 
was built with Windows Communication Foundation (WCF) .framework. 

1.3 Usage Restrictions 

The Provincial XML solution is provided as a system to system interface in order to facilitate the data 
exchange between the HPG environment to a third party system which will store and present the data 
using its client application technology of choice. 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

7 

 

In this context, the data exchanged through the Provincial XML solution has a transient nature is not 
guaranteed to be a persistent provider data store. Therefore the Provincial XML solution cannot be 
used as a definitive repository of provider data for third party systems and connected directly to user 
facing client applications. Various third party systems have to accumulate the provider data furnished 
through Provincial XML solution and present it to their client application from within the Provider 
system boundaries. 

The Provincial XML solution will not support connecting user facing client applications directly to the 
Provincial XML solution as this will unnecessarily increase the bandwidth requirements for the 
provincial solution. Any third party system has to optimize the Provincial XML data exchange and only 
access the OACCAC Provincial XML application though a limited (finite) number of connections. 

All messages that are retrieved successfully on the first attempt will have to be marked as PROCESSED 
by the Provincial XML Client application. 

An Acceptable usage of Provincial XML data exchange is depicted below: 

OACCAC 
Firewall

Provider System 
Firewall (optional)

Provincial XML 
Application Server

Provider System
(Provincial XML client)

Provider Facing /
Client Application

Provider Facing /
Client Application

OACCAC – Provincial XML 
Production environment

Third Party/Provider System
Production environment  

In this scenario the Provider XML client is implemented by a server application within the third 
party/provider system environment. The server application in this environment will channel all end-
user/provider application requests to the Provincial XML server hosted in the OACCAC environment.  

In this context, it is also assumed that the transactions that have been consumed already by the third 
party/provider system are already residing in the third party/provider system environment and will 
not be requested again from the Provincial XML server application hosted on the OACCAC 
environment. 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

8 

 

This restriction is included to ensure that provider systems are not continuously relying on Provincial 
XML server application to act as a data store for various third party/provider client applications. The 
Provincial XML solution implements a transient system from a data persistency perspective and its 
clients cannot assume the transactional data will be available after the first successful delivery. 

The picture below is shown as an Unacceptable usage of the Provincial XML solution:  

OACCAC 
Firewall

Provider System 
Firewall (optional)

Provincial XML 
Application Server

Provider Facing /
Client Application

(Provincial XML Client)

Provider Facing /
Client Application

(Provincial XML Client)

OACCAC – Provincial XML 
Production environment

Third Party/Provider System
Production environment

 

In this context the client applications implement the Provincial XML client and are connected directly to the 
Provincial XML server application hosted within the OACCAC environment. The third party/provider system users 
are also using the Provincial XML server application as a repository of provider data; requesting it from the server 
as part of the workflow implemented in their systems. 

This solution is an unacceptable usage of the Provincial XML solution since it increases the bandwidth required 
for the client system to execute Provincial XML transactions, it wrongly assumes the data will permanently be 
available in the Provincial XML for every single transaction even after the information was already delivered to 
the third party/provider system in a previous request. These two factors combined create an unnecessary stress 
on the Provider XML server application and limits its ability to serve other legitimate requests.  

In conclusion the usage of the Provider XML solution is envisioned as a server to server XML transactional system 
and its usage should be limited to that.  

 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

9 

 

2. Service Contracts 

2.1 Overview 

Three service contracts are exposed to end consumers, Get Message List, Get Message, and Post 
Message.  All methods require Windows Impersonation to be enabled at the client and server, and all 
methods are compliant with the WS-Security specification published by OASIS. (See the security 
overview section for more details about security and user impersonation). 

 
Get Messages List and Get Message 

The usage pattern is to first obtain a list of pending messages with the Get Message List method, and 
to then retrieve those messages by constructing Get Message requests for a sub-list of the messages 
Ids returned by Get Message List. 

The Ids returned by Get Message List correspond to the ‘Track IDs’ which exist within HPG today.  The 
messages returned by Get Message will be Provincial XML representations of existing HPG documents.  
For release 1.5, the following document types are supported:  

- Equipment and Supply Order 

- Service Referral 

- Service Frequency Update 

- Billing Reconciliation Report for Equipment and Supply 

- Billing Reconciliation Report for Purchase Service 

- Service Offer 

- Provider Report Response 

 
Post Message 

The usage pattern is to construct Post Message request with an input document of Provincial XML 
Document (PXD) format. The response of the method will contain a ‘Track ID’ for tracking purpose. For 
release 1.5, the following document types are supported: 

- Billing Invoice for Equipment and Supply 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

10 

 

- Billing Invoice for Purchase Service 

- Service Offer Response 

- Provider Report  

Subsequent releases will support other document types.  The schema files for PXD documents are 
provided by the OACCAC. 

Below is an overview of these two methods, include WSDL snippets describing the service methods.  
The bulk of the remaining document goes into details about request arguments, object definitions, 
and usage examples.  These methods will initially be exposed as Web Services over the SOAP protocol.   

2.2 Service Reference 

For the Certification Environment: 

Service reference: http://provxml-cert.apps.ccac-ont.ca/ProvincialXmlService.svc 

For the Production Environment: 

Service reference: http://provxml.ccac-healthpartners.ca/ProvincialXmlService.svc 

2.3 Get Message List 

The Get Message List method will return a list of message IDs (HPG Track IDs) corresponding to the 
request arguments.  If no arguments are supplied, the HPG default of all pending documents for the 
last calendar week will be applied.  

 Method Signature Pseudo-code 
GetMessageListResponseItemWrapper GetMessage(GetMessageListRequestItemWrapper) 

WSDL message input element 
 <wsdl:message name="IProvincialXmlService_GetMessageList_InputMessage"> 
     <wsdl:part name="parameters" element="tns:GetMessageList"/> 
 </wsdl:message>  

WSDL message output element 
 <wsdl:message name="IProvincialXmlService_GetMessageList_OutputMessage"> 
     <wsdl:part name="parameters" element="tns:GetMessageListResponse"/> 
 </wsdl:message>  

WSDL operation element 
 <wsdl:operation name="GetMessageList"> 

http://provxml-cert.apps.ccac-ont.ca/ProvincialXmlService.svc
http://provxml.ccac-healthpartners.ca/ProvincialXmlService.svc


 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

11 

 

       <wsdl:input wsaw:Action="http://tempuri.org/IGetMessageListService/GetMessageList" 
message="tns:IProvincialXmlService_GetMessageList_InputMessage"/> 
       <wsdl:output 
wsaw:Action="http://tempuri.org/IGetMessageListService/GetMessageListResponse" 
message="tns:IProvincialXmlService_GetMessageList_OutputMessage"/> 
 </wsdl:operation>  

 

Description 

 
The GetMessageList Service Contract method defines the interface for participants to retreive lists of 
documents IDs according to the passed critera.  A response will contain a list of Ids and reference 
names, one item per document.  GetMessageList will return an empty list in the event that no 
documents were found for the given criteria arguments. 

An empty criteria set will default to the last calendar week’s worth of documents. 

 Arguments 

1. GetMessageListRequestItemWrapper : The GetMessageListRequestWrapper is the top 
container argument for the GetMessageList method.  It is a container of individual 
GetMessageListRequestItems, each of which can produce a non-empty return set.  The fields 
for GetMessageListRequestItem and its Wrapper are described below in the Data Contracts 
section. 

Response 

1. GetMessageListResponseItemWrapper : The GetMessageListResponseWrapper is the top 
container which encapsualtes all response items for a given request.  This top container also 
contains response status information (i.e., Success or Fail ).  The fields for 
GetMessgeListResponseItemWrapper are described below in the Data Contracts section. 

2.4 Get Message 

The Get Message method will return a Provincial XML document payload corresponding to a 
translation of an existing HPG document.  The actual document types returned are content-driven.  
For example, a document stored as Chris-XML CCME-Equipment Supply Order will return an 
equivalent Provincial Xml Equipment Supply Order document.  



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

12 

 

The returned document versions are dependent upon client preference and server configuration and 
ability – supported versions will be agreed upon out-of-band during scheduled meetings or 
correspondence. 

 

Method Signature Pseudo-Code 
GetMessageResponseItemWrapper GetMessage(GetMessageRequestItemWrapper) 

WSDL message input element 
<wsdl:message name="IProvincialXmlService_GetMessage_InputMessage"> 
     <wsdl:part name="parameters" element="tns:GetMessage"/> 
</wsdl:message>  

WSDL message output element 
 <wsdl:message name="IProvincialXmlService_GetMessage_OutputMessage"> 
     <wsdl:part name="parameters" element="tns:GetMessageResponse"/> 
 </wsdl:message> 

WSDL operation element 
<wsdl:operation name="GetMessage"> 
         <wsdl:input wsaw:Action="http://tempuri.org/IGetMessageService/GetMessage" 
message="tns:IProvincialXmlService_GetMessage_InputMessage"/> 
         <wsdl:output wsaw:Action="http://tempuri.org/IGetMessageService/GetMessageResponse" 
message="tns:IProvincialXmlService_GetMessage_OutputMessage"/> 
 </wsdl:operation> 

 

Description 
The GetMessage Service Contract method defines the interface for participants to retreive one or 
more document bodies which correspond to the PXD schemas.  Each response item will contia a single 
document with its body, routing information, and primary identifying fields.  Once a document has 
been retrieved, it will be marked as ‘processed’ within HPG according to the current business rules 
(i.e., if a document action from the HPG interface would cause a document to be marked as processed, 
an equivlent acvtion through Provincial XML will also cause the message to be processed )  

GetMessage will return an empty result set in the event that no documents were found for the given 
criteria arguments. 

An empty criteria set will default to the last calendar week’s worth of documents. 

 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

13 

 

 

 

 Arguments 

1. GetMessageRequestItemWrapper : The GetMessageRequestWrapper is the top container 
argument for the GetMessage method.  It is a container of individual 
GetMessageRequestItems, each of which has a 1-to-1 correspondance to a document to 
return.  The fields for GetMessageRequestItem and its Wrapper are described below in the 
Data Contracts section 

Response 

1. GetMessageResponseItemWrapper : The GetMessageResponseWrapper is the top container 
which encapsualtes all response items for a given request.  This top container also contains 
response status information (i.e., Success or Fail ).  The fields for 
GetMessgeResponseItemWrapper are described below in the Data Contracts section. 

2.4.1 Get Message – changing POSTED to PROCESSED 

 

It is mandatory that whether a message are retrieved via XML or manually through the HPG GUI that the 

status of specific message types changes from POSTED to PROCESSED and a processed date is populated 

in the HPG GUI.  The message types that must change from POSTED to PROCESSED are: 

- Equipment and Supply Order 

- Service Referral 

- Service Frequency Update 

- Billing Reconciliation Report for Equipment and Supply 

- Billing Reconciliation Report for Purchase Service 

- Provider Report Response 

Note:  Service Offer messages appear as POSTED in HPG, the status does not change PROCESSED. 

 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

14 

 

2.5 Post Message 

The Post Message method will accept an XML document of Provincial XML Document (PXD) format as 
an input, translate it to a corresponding Chris-XML document type, and store the translated content to 
a backend database for future processing. The actual document types stored are content-driven.  For 
example, an input document of Provincial XML Equipment Supply Billing Invoice type will be stored as 
a Chris-XML CCM-Equipment Supply Billing Invoice document.  

 

Method Signature Pseudo-Code 
PostMessageResponseItemWrapper PostMessage(PostMessageRequestItemWrapper) 

 

WSDL message input element 
<wsdl:message name="IProvincialXmlService_PostMessage_InputMessage"> 
     <wsdl:part name="parameters" element="tns:PostMessage"/> 
</wsdl:message>  

 

WSDL message output element 
 <wsdl:message name="IProvincialXmlService_PostMessage_OutputMessage"> 
     <wsdl:part name="parameters" element="tns:PostMessageResponse"/> 
 </wsdl:message> 

 

WSDL operation element 
<wsdl:operation name="PostMessage"> 
         <wsdl:input wsaw:Action="http://tempuri.org/IPostMessageService/PostMessage" 
message="tns:IProvincialXmlService_PostMessage_InputMessage"/> 
         <wsdl:output wsaw:Action="http://tempuri.org/IPostMessageService/PostMessageResponse" 
message="tns:IProvincialXmlService_PostMessage_OutputMessage"/> 
 </wsdl:operation> 

 

Description 
The PostMessage Service Contract method defines the interface for participants to send one or more 
document bodies which correspond to the PXD schemas.  Each response item contains an ID for 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

15 

 

tracking purpose.  Once a document is sent and stored to a backend database, it will be marked as 
‘Posted’ within HPG. 

 Arguments 

1. PostMessageRequestItemWrapper : The PostMessageRequestWrapper is the top container 
argument for the PostMessage method.  It is a container of individual 
PostMessageRequestItems, each of which has a 1-to-1 correspondance to a document to post.  
The fields for PostMessageRequestItem and its Wrapper are described below in the Data 
Contracts section 

Response 

1. PostMessageResponseItemWrapper : The PostMessageResponseWrapper is the top 
container which encapsualtes all response items for a given request.  This top container also 
contains response status information (i.e., Success or Fail ).  The fields for 
PostMessgeResponseItemWrapper are described below in the Data Contracts section. 

 

When posting messages the status must be POSTED.  There should be no processed date. 

  



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

16 

 

3. Data Contracts 

3.1 Overview 

There are three pairs of messaging data contracts; a request-response pair for each of 
GetMessageList, GetMessage, and PostMessage. Additionally, there is a data contract for response 
errors. 

The following sections provide more details on how the requests can be constructed.  Since all 
methods require authentication, section describes how to construct a WCF client using C#. 

3.2 Construct a new Provincial XML Service Client 

This snippet shows how to construct a new client, and to set the security options correctly.  All 
examples that follow will make use of this ‘method’ whenever the ‘GetNewClient()’ called. 
private static ProvincialXmlServiceClient GetNewClient() 
{ 

ProvincialXmlServiceClient toReturn = new ProvincialXmlServiceClient(); 

toReturn.ClientCredentials.UserName.UserName = “{UserName supplied by OACCAC}”;            

 toReturn.ClientCredentials.UserName.Password = “{Password supplied by OACCAC}”; 

return toReturn; 

} 

3.3 Get Message List Data Contracts 

3.3.1 Get Message List Request Item Wrapper 

Description 
The Get Message List Request Item Wrapper is the top-level container which encapsualtes all 
information involved in a GetMessageRequest message. 

 

Data Contract pseudo-code 
GetMessageRequestItemWrapper 
{    



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

17 

 

public enum RequestVersions { OnePointZero = 1 } 

public List<GetMessageListRequestItem> RequestItems; 

public RequestVersions ContractVersion; 

} 

Data Constants 
RequestVersions – An enumerated type bounding the valid values for the contract version.   

Data Members 
RequestItems - A list of individual GetMessageListRequestItems. The list must be non-empty to be a 
valid request. 

ContractVersion – This is an enumerated field that depicts the version of this data contract.  Future 
releases may refine the data contract to include new fields or restrictions to support enhanced 
functionality.  For release 1.0 only the ‘OnePointZero’ enumeration is valid. 

3.3.2 Get Message List Request Item 

Description 
The GetMessageListRequestItem object encapsulates all information necessary to query Provincial 
XML for a list of pending (i.e., unprocessed) HPG documents according to the given criteria.  It is 
permissible to send multile GetMessageListRequest Items per GetMessageListRequestItemWrapper 
top-level request, but the system is not obligated to filter the results such that each returned list set 
contains only unique documents, since the document identifiers themsvels may be in different 
domains, both Ids and reference names for example. 

 

Data Contract pseudo-code 
GetMessageListRequestItem 
{               

        public GetMessageListFilter RequestFilter; 

 } 

 

Data Members 
RequestFilter – An object which encapsulates criteria to return a particular set of pending documents 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

18 

 

related in some way i.e., by date range, partial reference name, message type, etc.  The 
GetMessageListFilter data contract id detailed in the filter section below. 

 

3.3.3 Get Message List Examples 

3.3.4 Get Message List – Using No Filters 

Get a list of messages, using no filters, and iterate through the returned list 
using (ProvincialXmlServiceClient cli = GetNewClient()) 
{ 

GetMessageListRequestItemWrapper req = new GetMessageListRequestItemWrapper(); 

               req.RequestItems = new GetMessageListRequestItem[1]; 

               req.RequestItems[0] = new GetMessageListRequestItem(); 

               GetMessageListResponseItemWrapper resp = cli.GetMessageList(req); 

                

foreach ( GetMessageListResponseItem item in resp.ResponseItems) 

Console.Out.Write( “[MessageID] ” + item.ResponseData +  

 “, [Message Name] ” + item.ReferenceName + 

 “, [DestinationTeamId] ” + item.ResponseFilter.MessageDestination); 

 } 

 

3.3.5 Get Message List – Using Message Name Filter  

The following example gets a list of messages using a message name filter. Message name filters will 
match with wildcards on the server, so the following example will find all messages with the word 
“Order” in the name, i.e. ‘EquipmentSupplyOrder_1456’ 

It is important to note that message name is based on the HPG document description and is not the 
same as message type. (see HPG screen shot below for Document Description) Some message types 
have multiple message names. 
using (ProvincialXmlServiceClient cli = GetNewClient()) 
{ 

GetMessageListFilter f = new GetMessageListFilter(); 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

19 

 

f.ReferenceName  = “Order”; 

GetMessageListRequestItemWrapper req = new GetMessageListRequestItemWrapper(); 

req.RequestItems = new GetMessageListRequestItem[1]; 

req.RequestItems[0] = new GetMessageListRequestItem(); 

req.RequestItems[0].RequestFilter = f; 

GetMessageListResponseItemWrapper resp = cli.GetMessageList(req); 

                

foreach ( GetMessageListResponseItem item in resp.ResponseItems) 

Console.Out.Write( “[MessageID] ” + item.ResponseData +  

“, [Message Name] ” + item.ReferenceName + 

 “, [DestinationTeamId] ” + item.ResponseFilter.MessageDestination); 

} 

 

 

3.3.6 Get Message List – Specific Message Types Filter 

There are a number of message type, you may want to reteive only specific message types. 

Retrieving specific message types is optional. 

The following example shows how the client can request a list of Service Offer and Service Referral 
messages. 

using (ProvincialXmlServiceClient cli = GetNewClient()) 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

20 

 

 { 

GetMessageListFilter f1 = new GetMessageListFilter(); 

f1.MessageType = "ServiceReferral"; 

GetMessageListFilter f2 = new GetMessageListFilter(); 

f2.MessageType = "ServiceOffer"; 

 

GetMessageListRequestItemWrapper req = new GetMessageListRequestItemWrapper(); 

               req.RequestItems = new GetMessageListRequestItem[2]; 

               req.RequestItems[0] = new GetMessageListRequestItem(); 

req.RequestItems[0].RequestFilter = f1; 

               req.RequestItems[1] = new GetMessageListRequestItem(); 

req.RequestItems[1].RequestFilter = f2; 

               GetMessageListResponseItemWrapper resp = cli.GetMessageList(req); 

                

foreach ( GetMessageListResponseItem item in resp.ResponseItems) 

Console.Out.Write( “[MessageID] ” + item.ResponseData +  

 “, [Message Name] ” + item.ReferenceName + 

 “, [DestinationTeamId] ” + item.ResponseFilter.MessageDestination);  

         } 

  

3.3.7 Get Message List – Using Date Filters 

The following example gets a list of messages using a date filter.  All messages between March 15 and 
April 1, 2009, will be queried.  
using (ProvincialXmlServiceClient cli = GetNewClient()) 

 { 

GetMessageListFilter f = new GetMessageListFilter(); 

f.EndDate = DateTime.Parse(“2009-04-01”); 

               f.StartDate = DateTime.Parse(“2009-03-15”); 

GetMessageListRequestItemWrapper req = new GetMessageListRequestItemWrapper(); 

               req.RequestItems = new GetMessageListRequestItem[1]; 

               req.RequestItems[0] = new GetMessageListRequestItem(); 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

21 

 

req.RequestItems[0].RequestFilter = f; 

               GetMessageListResponseItemWrapper resp = cli.GetMessageList(req); 

                

foreach ( GetMessageListResponseItem item in resp.ResponseItems) 

Console.Out.Write( “[MessageID] ” + item.ResponseData +  

 “, [Message Name] ” + item.ReferenceName + 

 “, [DestinationTeamId] ” + item.ResponseFilter.MessageDestination);  

    }  
 

3.3.8 Get Message List Response Item 

Description 
The GetMessageListResponseItem object encapsulates a single returned document instance.  The 
information returned is analagous to to the document header, in that a GetMessageListResponseItem 
contains all necessary information to uniquely identify a document instance, and a subsequent 
GetMessageRequestItem can be constructed to fetch the document contents translated into PXD 
schema format. 

 

Data Contract pseudo-code 
GetMessageListResponseItem 
{         

        public readonly String ResponseData; 

        public readonly String ReferenceName; 

        public readonly GetMessageListFilter ResponseFilter; 

}  

 

Data Members 
ResponseData – A GUID string which uniquely represents the returned document in Provincial XML 
and HPG.  This is equivalent to the Track Id in HPG. 

ReferenceName – A user-supplied name which represents this document, not guaranteed to be 
unique.  Usually descriptive, i.e., ‘EquiplentSupplyOrder1234’ 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

22 

 

ResponseFilter – The Response Filter.  

i) ResponseFilter.MessageDestination – The Destination's TeamID.   

3.4 Get Message Data Contracts 

3.4.1 Get Message Request Item Wrapper 

Description 
The Get Message Request Item Wrapper is the top-level container which encapsualtes all information 
involved in a GetMessageRequest message. 

 

Data Contract pseudo-code 
GetMessageRequestItemWrapper 
{    

        public enum RequestVersions { OnePointZero = 1 } 

        public List<GetMessageRequestItem> RequestItems; 

        public RequestVersions ContractVersion; 

} 

 

Data Constants 
 RequestVersions – An enumerated type bounding the valid values for the contract version.   

Data Members 
RequestItems - A list of individual GetMessageRequestItems. The list must be non-empty to be a valid 
request. 

 ContractVersion – The Contract version is an enumerated field that depicts the version of this data 
contract.  Future releases may refine the data contract to include new fields or restrictions to support 
enhanced functionality.  For release 1.0 only the ‘OnePointZero’ enumeration is valid. 

 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

23 

 

3.4.2 Get Message Request Item 

Description 
The Get Message Request Item represents a request for a single document by Id. 

 

Data Contract pseudo-code 
GetMessageRequestItem 
 {    

public String RequestData; 
public String RequestSenderType; 
public String RequestSenderId; 
public String ExpectedResponseVersion; 

} 

  

Data Members 
RequestData - The request data represents the unique ID for the specific entity to operate upon.  For 
HPG messages, it corresponds to the Message TrackID. 

RequestSenderType – Always set to ‘Team’ to correlate to RequestSenderId (i.e. TeamId) 

RequestSenderId - The request sender ID represents the TeamID for the requestor retrieving the 
specific message. According to the business rule, this field must be non-empty and valid in order to 
mark the “Posted” message “Processed” 

ExpectedResponseVersion – The response version represents the version of the payload of a message 
the requestor expects to retrieve. Below is the message type currently supported in Release 1.4 with 
multi-versioning capability:  

a) ServiceReferral  

 

3.4.3  Get Message Examples 

The Get Message method will return the actual payload of a message, in Provincial XML document 
format. 
 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

24 

 

3.4.4 Get Message – For a Specific Message ID 

The following example will get a single message with an explicit Message ID, equivalent to the GUID 
with value ‘06c8a5d9-49e0-4dd6-8f3a-548d53e7c21c’.  
 

 This implementation only retrieves the message, without changing the status from “Posted” to “Processed” .  

Because the status is not changed to Procesed this example should be used for testing only.   

 
using (ProvincialXmlServiceClient cli = GetNewClient()) 
{ 

GetMessageRequestItemWrapper req = new GetMessageRequestItemWrapper(); 

               req.RequestItems = new GetMessageRequestItem[1]; 

               req.RequestItems[0] = new GetMessageRequestItem(); 

               req.RequestItems[0].RequestData = “06c8a5d9-49e0-4dd6-8f3a-548d53e7c21c”; 

req.RequestItems[0].RequestSenderType = “Team”; 

GetMessageResponseItemWrapper resp = cli.GetMessage (req);             

                

foreach( GetMessageResponseItem item in resp.ResponseItems) 

Console.Out.Write( item.ResponseData ); 

} 

3.4.5 Get Message – Change Status to PROCESSED 

The following example will get a single message with an explicit Message ID, as well as marking it 
“Processed” with the input of TeamID. 

Changing the status of a message from POSTED to PROCESSED is mandatory for implementation in the 
production environment. 

 
using (ProvincialXmlServiceClient cli = GetNewClient()) 
{ 

GetMessageRequestItemWrapper req = new GetMessageRequestItemWrapper(); 

               req.RequestItems = new GetMessageRequestItem[1]; 

               req.RequestItems[0] = new GetMessageRequestItem(); 

               req.RequestItems[0].RequestData = “06c8a5d9-49e0-4dd6-8f3a-548d53e7c21c”; 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

25 

 

req.RequestItems[0].RequestSenderType = “Team”; 

req.RequestItems[0].RequestSenderId = “{Requestor’s TeamID (eg. 6092)}”; 

GetMessageResponseItemWrapper resp = cli.GetMessage (req);             

                

foreach( GetMessageResponseItem item in resp.ResponseItems) 

Console.Out.Write( item.ResponseData ); 

} 

3.4.6 Get Message – By Specific Version 

The message schemas will change over time.  To give providers/vendors opportunity to make necessary 
changes in their systems multiple versions of the same message type will be supported.  It is important to 
note that if the message version is not specified you will retreive the oldest version of the message.  For 
example:  if there are versions 1.1; 1.2 and 1.3 of a schema and you do not specifiy a version you will 
retreive 1.1 by default.  If on the other hand you are not concerned about the new message versions 
being released and you would like to retrieve the latest (most recent) message versions you can specify a 
high decimal value, such as 99.0 or Decimal.MaxValue to automatically request them. 

 Retrieving specific message types is not mandatory but it is highly suggested.  

The following example will get a single message with an explicit Message ID, and the contents of the 
message can be different based on the ExpectedResponseVersion specified. 
using (ProvincialXmlServiceClient cli = GetNewClient()) 
{ 

GetMessageRequestItemWrapper req = new GetMessageRequestItemWrapper(); 

               req.RequestItems = new GetMessageRequestItem[1]; 

               req.RequestItems[0] = new GetMessageRequestItem(); 

               req.RequestItems[0].RequestData = “06c8a5d9-49e0-4dd6-8f3a-548d53e7c21c”; 

req.RequestItems[0].RequestSenderType = “Team”; 

req.RequestItems[0].ExpectedResponseVersion = “{Payload Version (eg. 2.15)}” 

GetMessageResponseItemWrapper resp = cli.GetMessage (req);             

                

foreach( GetMessageResponseItem item in resp.ResponseItems) 

Console.Out.Write( item.ResponseData ); 

} 

 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

26 

 

If requesting more then one message you can specify multiple GetMessageRequestItem elements. 

 

3.4.7 Get Message Response Item 

Description 
The GetMessageResponseItem encapsulates all of the fields representing an entire document, 
including the XML payload. 

 

Data Contract pseudo-code 
GetMessageResponseItem 
 {    

        public readonly String ResponseData;            

        public readonly String SenderId;     

        public readonly String SenderType; 

        public readonly String DestinationId; 

        public readonly String DestinationType; 

        public readonly String ReferenceId; 

        public readonly String ReferenceName;       

} 

  

Data Members 
ResponseData - The Response Data field contains the entire XML document, encoded in UTF-8. 

SenderId- The Sender's ID - i.e., the Team ID.  The empty string if not applicable or error. 

SenderType – The Sender's Type - i.e., 'Team'.  The empty string if not applicable or error 

DestinationId – The Destination's ID - i.e., the Team ID.  The empty string if not applicable or error. 

DestinationType – The Destination's Type - i.e., 'Team'.  The empty string if not applicable or error. 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

27 

 

ReferenceId – The Referernce Id is a unique (to the applicable domain) identifier for this item.  In the 
case of messages this is equivlent to the HPG TrackID.  The empty string if not applicable or error. 

ReferenceName – Descriptive text for this item. For XML messages, this is quivlent to the HPG 
Messagevname. The emptry string if not applicable or error. 

 

  



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

28 

 

3.5 Post Message Data Contracts 

3.5.1 Post Message Request Item Wrapper 

Description 
The Post Message Request Item Wrapper is the top-level container which encapsualtes all information 
involved in a PostMessageRequest message. 

 

Data Contract pseudo-code 
PostMessageRequestItemWrapper 
{    

        public enum RequestVersions { OnePointZero = 1 } 

        public List<PostMessageRequestItem> RequestItems; 

        public RequestVersions ContractVersion; 

} 

 

Data Constants 
RequestVersions – An enumerated type bounding the valid values for the contract version.   

 

Data Members 
RequestItems - A list of individual PostMessageRequestItems. The list must be non-empty to be a valid 
request. 

ContractVersion – The Contract version is an enumerated field that depicts the version of this data 
contract.  Future releases may refine the data contract to include new fields or restrictions to support 
enhanced functionality.  

3.5.2 Post Message Examples 

The Post Message method will accept an XML document of Provincial XML Document (PXD) format as 
an input, translate it to a corresponding Chris-XML document type, and post the translated content to 
HPG backend database. 

 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

29 

 

The following example will post an XML message with <Message Reference Name>, and will return the 
unique HPG Track ID to the sender. 

using (ProvincialXmlServiceClient cli = GetNewClient()) 

 { 

PostMessageRequestItemWrapper req = new PostMessageRequestItemWrapper();           

req.RequestItems = new PostMessageRequestItem[1]; 

req.RequestItems[0] = new PostMessageRequestItem(); 

req.RequestItems[0].RequestData = “{Provincial XML Message to Post}”; 

req.RequestItems[0].RequestReferenceName = “Billing Invoice 12345 - ES”; 

PostMessageResponseItemWrapper resp = cli.PostMessage (req);             

 

Foreach( PostMessageResponseItem item in resp.ResponseItems) 

Console.Out.Write( item.ReferenceId ); 

} 

3.5.3 Post Message Request Item 

Description 
The Post Message Request Item represents a request for posting a single document into HPG 
database. 

 

Data Contract pseudo-code 
PostMessageRequestItem 
 {    

public String RequestData; 

public String RequestReferenceName; 

} 

  

Data Members 
RequestData - The Request Data field contains the entire XML document to post. 

RequestReferenceName – this is equivalent to the HPG Message Name. The emptry string if not 
applicable or error. 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

30 

 

 

3.5.4 Post Message Response Item 

Description 
The PostMessageResponseItem encapsulates fields uniquely representing the posted document, 
including HPG Track ID. 

 

Data Contract pseudo-code 
PostMessageResponseItem 
{    

public readonly String ReferenceId; 

} 

 

Data Members 
ReferenceId – the Track Id in HPG, which uniquely represents the posted document in Provincial XML 
and HPG 

3.6 Filter Data Contracts 

Filters represent modifications or limits to request/response items.  Initially, they are intended to 
allow for an encapsulation of message querying criteria.  In future releases, they will be extended to 
allow for partial acceptance of messages and reporting on excluded transaction Ids. 

3.6.1 GetMessageListFilter 

Description 
 The GetMessageListFilter encapsultes a number of fields which can be used to specify the kind of 
messages a consumer will wish to download and process. If multiple criteria are specified, they are 
combined to produce a result set in which all criteria must be satisfied.  Messages which partially 
match the crtieria will be excluded. 

 

Data Contract pseudo-code 
 GetMessageListFilter 
 { 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

31 

 

        public DateTime StartDate;   

        public DateTime EndDate;    

        public MessageStatusEnum Message Status; 

        public String MessageType; 

        public String MessageDestination;     

        public String MessageSource;   

        public String MessageAuthor; 

        public String ReferenceName; 

 } 

Data Members 
StartDate – Only messages with a timestamp after the start date will be returned.  The exact 
comparison is greater-than-or-equal-to.  

EndDate – Only messages with a timestamp before the end date will be returned.  The exact 
comparison is greater-than-or-equal-to. 

 MessageStatus – Only messages with the particular status will be returned.  This is equivlent to the 
HPG delivery status.  An Enumerated type of ‘Posted’ {0} or ‘Processed’ {1} is provided, the numeric 
equivlents correspond to the ones in HPG currently 

MessageType – Only messages of the particular types will be returned.  This is equivlent to the HPG 
message type, and must be equivlent to the type string. Below are the valid type strings currently 
supported in Release 1.4: 

b) EquipmentSupplyOrder 

c) ServiceReferral 

d) ServiceFrequencyUpdate 

e) BillingRAEquipmentSupply 

f) BillingRAPurchaseService 

g) ServiceOffer 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

32 

 

MessageDestination – Only messages with the TeamID matching messageDestination will be 
returned. For response filters, equal to the TeamID of the destination. Not compatible with any other 
filter being set as a request filter. 

MessageSource – The Message’s source. This value should be equivlent to the HPG ‘Message Source 
String’.Id.  

MessageAuthor – The ID of the user which authored the message. 

ReferenceName – A String which will be partially matched (i.e., it will implicitly have wildcards on each 
end) against message reference names in the user’s inbox. No spaces or none alpha-numeric 
characters are accepted. 

3.7 Error Response Data Contracts 

All wrappers and message items contain response error fields.  In the event of most application errors, 
these objects will be populated accordingly.  Errors will contain the following information 

 

Data Contract pseudo-code 
ErrorResponse 
 {    

        public enum ErrorType { … Described below… } 

        public String ErrorDescription 

        public String ErrorID 

 } 

 

Data Members  
Error Type: An enumeration, detailed as follows: 

‘Request Type Invalid’ – if a service contract was invoked with an incorrect request object 

‘Request Parameters Invalid’ – If insufficient parameter or filter information was contained in the 
request to construct a meaningful response.  For example, if a get message request is received without 
a filter or reference Id. 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

33 

 

‘Invalid DEWS User’ – If the Windows user impersonation cannot find a valid HPG/DEWS account.  
Correspondence with OACCAC support is recommended if this error is encountered. 

‘Filter Parameter Error’ – If a filter contains invalid information. i.e., if the start date is after the end 
date for a date range criteria. = 

‘Invalid HPG Xml’ – If an HPG document cannot be translated into Provincial XML Format. 

‘General’ – Other kind of error.  The error description will contain details 

 
Error Description: will always be populated with detailed information regarding the error. 

Error ID: In addition, a GUID will be returned with each error – this GUID, called the ‘Error ID’ is also 
persisted on the server side and can be used to correlate client errors with server activity.  The Error ID 
should be provided every time communication occurs with the Provincial XML support team. 

 

In the event of more general system-level errors, the service contracts have implemented a WCF Fault 
Contract interface to return an Application Exception. No unhandled exceptions will be thrown by the 
Provincial XML service. 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

34 

 

4. Security Overview 

4.1 Overview 

Provincial XML utilizes the WS-Security standard to provide signing and encryption envelopes 
around SOAP messages. Authentication will be handled by Windows Active Directory (AD) 
authentication and impersonation. 

 

Authentication: Users are authenticated against an Active Directory (AD) domain which has 
been set up specifically to handle authentication and authorization for the Provincial XML 
solution.  Users will be identified through a TSL secured security context as specified in the 
WS-Security message-based security specification (OASIS).  The client code examples in 
section 5 demonstrate how to set the username credentials on the client before a message is 
constructed and transported.   

 

Confidentiality and Integrity:  The Provincial XML Solution will use message-based 
encryption and digital signature algorithms to ensure that confidentiality and integrity is 
achieved.  The message-level security conforms to the WS-Security specification, the exact 
type of which is ‘Message’ No key storage or key generation requirements are placed upon 
the client, they are negotiated at transport time.  The ‘Basic-256’ algorithm suite is currently 
used (AES-256, SHA1, RAS 1024) 

 

 

 

 

 



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

35 

 

5. Client Configuration 

5.1 Client Configuration Overview 

A default configuration file will be provided with the Provincial Xml Service Client distribution.  
The configuration is compliant with WCF client/service configuration files, and can be edited 
with the standard WCF service configuration editor provided by Microsoft.   

Below is an example configuration for production settings.  The OACCAC may advise that the 
below values will change before production or testing phases.  Fields in <green> are in-line 
comments on particular configuration items which are common to all service-oriented-
architecture (SOA) clients, and are intended to help configure any type of client, not just 
Microsoft or WCF ones.  Fields in <red> indicate server URLs or Service Principal Names 
(SPNs) for the endpoint Provincial XML Service  - the ones below are examples only, and are 
not intended to represent any UAT or production environment. 

 

NB: Meta-Data is now dynamically available for the service, using a web browser navigate to 
the endpoint URL and instructions will be provided to programmatically obtain the WSDLs and 
XSD files for the service. 

 

<?xml version="1.0" encoding="utf-8" ?> 

<configuration> 

  <system.serviceModel> 

    <bindings> 

      <wsHttpBinding> 

        <binding name="ProvincialXmlWSBinding" maxReceivedMessageSize="1048576"> 

 

          <security mode="Message" > 

            <message clientCredentialType="UserName" establishSecurityContext="false"/> 

          </security> 

        </binding> 

      </wsHttpBinding>      

    </bindings>    



 

Technical Documentation   Version:         1.14 

Provincial XML Service, User Guide   Date: 10 June 2013 

 

36 

 

    <client> 

      <endpoint address="https://example.ccac-ont.ca/ProvincialXmlProxy/ProvincialXmlService.svc" 

               binding="wsHttpBinding" bindingConfiguration="ProvincialXmlWSBinding"  

               behaviorConfiguration="ProvincialXmlClientBehavior" 

               contract="ProvincialXml.Client.IProvincialXmlService" name="ProvincialXmlClientBinding"> 

        <identity>      

          <The DNS settings will only need to be adjusted in the case that the endpoints DNS doest not 

EXACTLY equal the common name (CN) in the server certificate.  In prodiction environments this element 

should be removed. >      

          <dns value=”*.provxmltest.example.ccac-ont.ca”/> 

        </identity> 

      </endpoint> 

    </client> 

    <behaviors> 

      <endpointBehaviors> 

        <behavior name="ProvincialXmlClientBehavior"> 

          <clientCredentials> 

           <In order for Windows to propreley authenticate the client’s Kerberos tokens, delegation must be 

explicitly allowed at the client end, and NTLM authentication must be turned off> 

            <windows allowedImpersonationLevel = "Delegation"  allowNtlm = "False" /> 

          </clientCredentials> 

        </behavior> 

      </endpointBehaviors> 

    </behaviors> 

  </system.serviceModel> 

</configuration> 

 


